

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 180 (2007) 1038-1044

www.elsevier.com/locate/jssc

Magnetic diphase nanostructure of $ZnFe_2O_4/\gamma$ -Fe₂O₃

Xiangxi Bo^a, Guangshe Li^a, Xiaoqing Qiu^a, Yanfeng Xue^b, Liping Li^{a,*}

^aState Key Structural Chemistry Laboratory and Fujian Institute of Research on the Structure of Matter, Graduate School of Chinese Academy of Sciences, Fuzhou 350002, P.R. China

^bDepartment of Physics, Jilin University, Changchun 130023, P.R. China

Received 31 August 2006; received in revised form 15 December 2006; accepted 23 December 2006 Available online 9 January 2007

Abstract

Magnetic diphase nanostructures of $ZnFe_2O_4/\gamma$ - Fe_2O_3 were synthesized by a solvothermal method. The formation reactions were optimized by tuning the initial molar ratios of Fe/Zn. All samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and Raman spectra. It is found that when the initial molar ratio of Fe/Zn is larger than 2, a diphase magnetic nanostructure of $ZnFe_2O_4/\gamma$ - Fe_2O_3 was formed, in which the presence of $ZnFe_2O_4$ enhanced the thermal stability of γ - Fe_2O_3 . Further increasing the initial molar ratio of Fe/Zn larger than 6 destabilized the diphase nanostructure and yielded traces of secondary phase α - Fe_2O_3 . The grain surfaces of diphase nanostructure exhibited a spin-glass-like structure. At room temperature, all diphase nanostructures are superparamagnetic with saturation magnetization being increased with γ - Fe_2O_3 content. (C) 2007 Elsevier Inc. All rights reserved.

Keywords: Solvothermal; ZnFe2O4; y-Fe2O3; diphase nanostructure; superparamagnetic

1. Introduction

Ferrite nanocrystalline materials can be used in magnetic recording medium, information storage, bioprocessing, catalyst, and magnetooptical devices because of their promising physical properties [1–5]. Among these magnetic materials, spinel-type ferrites have gained prodigious importance. As is well known, spinel ferrite oxide can be described by a formula AB_2O_4 , where A and B denote the cations that are located at tetrahedral and octahedral sites, respectively. According to the valence states of A and Bcations, spinel ferrite oxides can be divided into two types of structures: normal and inverse ones to show diverse magnetic properties. Bulk ZnFe₂O₄ is a normal spinel ferrite in which Zn^{2+} cations at A sites are nonmagnetic and the magnetic moments of Fe^{3+} cations at *B* sites align anti-parallel each other. Consequently, bulk ZnFe₂O₄ is antiferromagnetic. However, when the particle size of ZnFe₂O₄ is varied within the nanoscale regime, ferrimagnetic or superparamagnetic structures appear [2-4,6],

E-mail address: lipingli@fjirsm.ac.cn (L. Li).

0022-4596/\$ - see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2006.12.034

strongly depending on the preparation methods and particle sizes. Consequently, the origin of abnormal magnetic phenomenon in $ZnFe_2O_4$ nanocrystals remains in controversy. Several research groups proposed that the magnetic properties of $ZnFe_2O_4$ are controlled by the super-exchange interactions that are introduced by modification of the distribution of Zn^{2+} and Fe^{3+} ions at Aand B sites [2,3,6], while others [4,5] have concluded that nonstoichiometry or inclusion of nonmagnetic zinc ions and the resulting magnetic disorder can be the possible causes. These controversies on the magnetic properties of $ZnFe_2O_4$ nanocrystals have put uncertain impacts on the development of new ferrite functional materials.

Experimental results reported previously in literature have shown that the magnetic properties of ferrite materials are determined by phase composition and microstructure [7–9]. It has been reported that the preparation of $ZnFe_2O_4$ nanocrystals is generally accompanied by segregation of secondary phases including γ -Fe₂O₃ [10]. Unfortunately, it is still very difficult to distinguish these possible component phases from $ZnFe_2O_4$ nanocrystals because all intensive diffraction peaks for these component phases have much closer *d*-spacings to

^{*}Corresponding author. Fax: +86 591 8371 9460.

those of $ZnFe_2O_4$ due to their spinel structures in common. As a result, most of the literature work has excluded the diphase nanostructures as the causes to the total magnetism of ZnFe₂O₄ nanocrystals. Indeed, the structural stability of y-Fe₂O₃ nanocrystals significantly increases with particle size reduction [11,12], and therefore γ -Fe₂O₃ nanocrystals could be one of the most likely component phases during the formation of ZnFe₂O₄. In addition, γ -Fe₂O₃ can be ferromagnetic or superparamagnetic at room temperature, depending on the particle sizes and preparation methods [13–16]. It is expected that γ -Fe₂O₃ would contribute to the total magnetism to some extent, if it coexisted as a diphase nanostructure with ZnFe₂O₄. However, experimental identification and magnetic properties of diphase nanostructures of $ZnFe_2O_4/\gamma$ -Fe_2O₃ are still unattainable.

In this work, we studied the optimum preparation conditions to diphase nanostructures of $ZnFe_2O_4/\gamma$ -Fe₂O₃ by altering the initial Fe/Zn molar ratios of the solvothermal reaction system. By carefully characterizing the phase compositions and structural stability features, we explored the magnetic properties of diphase nanostructures as a function of γ -Fe₂O₃ content.

2. Experimental section

 $Fe(NO_3)_3 \cdot 9H_2O$ and $Zn(Ac)_2 \cdot 2H_2O$ were used as the starting materials, and NaOH was employed as the mineralizer for low-temperature crystallization. A typical preparation procedure can be described as follows: firstly, 0.01 mol Fe(NO₃)₃ \cdot 9H₂O and 0.005 mol Zn(Ac)₂ \cdot 2H₂O were dissolved in 30 mL ethanol while stirring. Then, 50 mL of 0.8 M NaOH solution in ethanol was added to this solution to form a brown suspension at pH = 7. After stirring for 0.5 h, this suspension was then transferred to 25 mL Teflon-lined stainless-steel autoclaves, which were allowed to react at 200 °C for 12 h. Sample A was obtained after washing with distilled water for several times and dried at 130 °C in an oven. Following this preparation procedure, samples B, C, D, and E were obtained, respectively, using initial Fe/Zn mole ratios ranging from 2 to 6.4 at the same pH value. The phase compositions of all as-prepared samples were analyzed by increasing the sample crystallinity via annealing at 700 °C for 1 h in air. The samples thus obtained were named as A700, B700, C700, D700, and E700.

The structures of the samples were characterized by X-ray diffraction (XRD) on Rigaku DMAX2500 X-ray diffractometer using a copper target. Silicon powder was used as internal standard for peak position determination. Average crystallite sizes of the samples were estimated by Scherrer formula, $D = 0.9\lambda/(\beta \cos \theta)$, where λ (= 0.15418 nm) is the X-ray wavelength, θ the diffraction angle of most intense diffraction peak (311) and (104) for ZnFe₂O₄ and α -Fe₂O₃, respectively.

Water content and phase transformation of the samples were determined using thermogravimetric analysis (TGA)

combined with a differential thermal analysis (DTA) on Netzsch STA449C thermogravimetric analyzer at a heating rate of 15 °C/min. The infrared spectra were recorded on a Perkin-Elmer IR spectrophotometer by using a KBr pellet technique. Raman data were collected using a JY-HR800 spectrometer with a He–Ne laser. The excitation wavelength is 632.8 nm and output powder is 20 mW. Chemical analysis of the samples was carried out using inductively coupled plasma (ICP) technique on a Perkin-Elmer Optima 3300 DV spectrometer.

BET specific surface areas of the samples are measured by N₂ adsorption isotherms at 77 K with P/P_0 equal to 0.3 on a Micromeritics ASAP 2000 surface area and porosity analyzer, where P is the pressure at equilibrium and P_0 the adsorbent vapor pressure at the measurement temperature. The magnetization curves of the samples were recorded at room temperature under an applied field of 80 KOe using a Quantum Design PPMS-7 magnetometer.

3. Results and discussion

The optimum formation conditions to diphase nanostructures of $ZnFe_2O_4/\gamma$ -Fe_2O₃ were investigated by varying the initial mole ratios of Fe to Zn. Fig. 1a shows XRD patterns of the as-prepared samples. It is seen that samples A-D gave intensive XRD patterns responsible for spinel structures (JCPDS no. 22-102). Chemical analysis by ICP indicated that the molar ratios of Fe/Zn in samples A-E were much closer to the initial ones. From these results, it is still very difficult to determine if these samples are in a single spinel phase or a diphase nanostructure, since all intensive diffraction peaks for component ferrites ZnFe₂O₄ and γ -Fe₂O₃ have much closer *d*-spacings (see vertical bars at the bottom of Fig. 1a). When the initial molar ratio of Fe/Zn is larger than 2, all diffraction peaks became broadened, indicating the fine nature or the presence of diphase nanostructures. Further increasing the initial molar ratios of Fe to Zn larger than 6 (sample E) destabilized the spinel nanostructures to show traces of α - Fe_2O_3 (Fig. 1a), though the intensive diffraction peaks for the dominant spinel phase did not have any pronounced changes.

To confirm the phase compositions, samples with initial molar ratios of Fe/Zn < 6 were annealed in air at high temperatures for 1 h so as to increase the crystallinity. As indicated in Fig. 1b, after annealing at 700 °C, sample A with an initial molar ratio of Fe/Zn = 2 still remained in a single spinel phase. The only difference for the annealed and un-annealed sample A is in the crystallite sizes: 5 nm for the initial sample A, which compares to 35 nm for A700. By contrast, samples B700, C700, and D700 were a mixture containing α -Fe₂O₃, as shown in Fig. 1(b) for typical sample D700, which implies that the as-prepared samples B, C, and D might be in a diphase nanostructure of ZnFe₂O₄/ γ -Fe₂O₃. The crystallite sizes of ZnFe₂O₄ and α -Fe₂O₃ phases in B700, C700, and D700 were calculated by XRD peak broadening. The results indicated that the

Fig. 1. XRD patterns of (a) the as-prepared samples under solvothermal methods and (b) samples A700, D700, and D500. Symbols * and Δ denote the internal standard Si and α -Fe₂O₃, respectively. Standard diffraction data for ZnFe₂O₄ (JCPDS no. 22-102), γ -Fe₂O₃ (JCPDS no. 39-1346), and α -Fe₂O₃ (JCPDS no. 33-0664) are also shown as vertical bars for comparison.

crystallite sizes for $ZnFe_2O_4$ phase in B700, C700, and D700 are all averaged about 20 nm, which are smaller than 35 nm for sample A700. On the other hand, the crystallite sizes of α -Fe₂O₃ in these samples remain almost the same at 50 nm. These results demonstrated that an excess of Fe in the initial molar ratio (>2) could suppress the coarsening of ZnFe₂O₄ nanocrystals and are therefore in favor of the formation of diphase nanostructures, while the intermediate wustite-type phase [17] such as those observed in ZnFe₂O₄ nanocrystals prepared by mechanosynthesis could be completely supressed.

Fig. 2. TG-DTA curves of samples A (a) and D (b).

Table 1 Initial molar ratios of Fe/Zn and experimentally obtained S_{BET} , $\Delta m/m$, T_p , and D_{XRD}

Sample	А	В	С	D
Molar ratio (Fe/Zn) $\Delta m/m$ (%) Transition T_P (°C) D_{XRD} (nm)	2.00 8.9 5.04	2.67 10.1 674 4.52	4.00 8.7 678 3.78	5.60 11.3 675 3.29
S_{BET} (m ² g ⁻¹)	149.5 40 ^a (γ-Fe ₂ O ₃)	176.5 78 ^b (ZnFe ₂ O ₄)	195.7	230.0

Note: T_p is the phase transition temperature of γ -Fe₂O₃ to α -Fe₂O₃, and $\Delta m/m$ is the relative mass. Both T_p and $\Delta m/m$ were determined by thermal analysis. D_{XRD} is the crystallite sizes that were estimated from XRD peak broadening using Scherrer formula. Symbols a and b represent the literature data from Refs. [14,34], respectively.

Thermal behaviors of the as-prepared samples A and D were examined by TGA-DTA. As indicated in Fig. 2, a sharp mass loss occurred in a temperature interval from 40 to 140 °C, which corresponds to the loss of physisorbed water on surfaces [18]. The second mass loss is observed in a wide temperature interval from 140 to 600 °C, which is followed by an unnoticeable endothermic peak due to dehydration of chemisorbed water. This observation can be explained in terms of the significant surface hydration effects. When the particle size was reduced to the nanoscale regime, surface and interface components may become dominant. The broken and uncoordinated bonds would result in increased surface energies. Just like what was theoretically predicted for CaWO₄ [19], several hydration layers present on surfaces could decrease the surface energies and therefore can stabilize the nanostructures. Such a surface hydration might be consisted by several water molecule layers that existed at a wide set of energetically nonequivalent sites for a gradual dehydration. The total mass losses of as-prepared samples (Table 1) did not have any pronounced changes with varying the ratios of Fe to Zn, which ruled out the possibility for FeOOH in the as-prepared samples. This assumption is confirmed by

the absence of the exothermic peak at 300 °C for decomposition of FeOOH [20]. It is also noted that Fe₃O₄ is another spinel compound. But for the present diphase nanostructures, Fe₃O₄ or oxide-phase intermediates between maghemite and magnetite is not likely a component phase, since the characteristic exothermic peak for their oxidation to γ -Fe₂O₃ [21] can be barely seen in DTA at around 160 °C (Fig. 2). When the temperature was increased higher than 600 °C, samples B, C, and D showed an exothermic peak at about 680 °C with no mass losses observed, which corresponded to a phase transformation from γ -Fe₂O₃ to α -Fe₂O₃, since XRD patterns of samples (e.g., D500) obtained after heating sample D at temperatures below 680 °C showed the presence of diphase nanostructures only, while those (e.g., D700) above 680 °C yielded plenty of α -Fe₂O₃ (Fig. 1b). Consequently, these thermal analysis results indicated the likely formation of a diphase nanostructure of $ZnFe_2O_4/\gamma$ -Fe₂O₃, with surfaces that are highly hydrated when the initial molar ratios of Fe/Zn are larger than 2.

Fig. 3 shows the enlarged IR spectra of the samples in the ranges 400–1000 and 2500–4000 cm⁻¹. For all samples, a broad absorption band was observed at 3440 cm⁻¹, which is associated with the surface hydration layers [22], and is consistent with our TG–DTA analysis. Two strong absorption bands were observed at about 560 (v_1) and 420 cm⁻¹ (v_2), which characterized the stretching vibrations of cations in tetrahedral and octahedral sites with oxygen [23], respectively. When the initial molar ratio of Fe/Zn is larger than 2, a shoulder band associated with γ -Fe₂O₃ [24] appeared at 630 cm⁻¹ with its intensity being increased with the initial molar ratio, which confirms the presence of γ -Fe₂O₃ in the as-prepared samples.

Raman spectra for samples A and D are presented in Fig. 4. Raman spectrum for D700 is also given for comparison. In the region of 190–900 cm⁻¹, samples A and D gave similar broad Raman peaks centered at 355, 490, and 668 cm⁻¹, which are associated with F_{2g} and A_{1g}

Fig. 3. Enlarged IR spectra for samples A, B, C, and D in the wavenumber regions of 4000-2500 and 1000-400 cm⁻¹.

Fig. 4. Raman spectra for samples A, D, and D700. Symbols D-1 and D-2 represent the Raman spectra of sample D recorded at different spots.

modes of standard spinel structure $ZnFe_2O_4$ [25] or T_1 , E, and A_1 modes of γ -Fe₂O₃ [26]. The broadened Raman modes observed for samples A and D are likely due to the diphase nanostructures and small sizes. On the other hand, for sample A with initial molar ratio of Fe/Zn = 2, XRD has indicated a pure phase of ZnFe₂O₄, and the Raman spectra measured at different spots are identical, which proves a homogeneous phase structure. While for initial molar ratio of Fe/Zn larger than >2, Raman spectra at different spots were different (Fig. 4). For example, Raman spectrum measured at D-2 spot showed characteristic Raman mode features of ZnFe₂O₄, while an additional Raman mode was observed at 1576 cm^{-1} for D-1 spot, which is associated with γ -Fe₂O₃ [27] in the diphase nanostructure $ZnFe_2O_4/\gamma$ -Fe_2O_3. It is interesting that sample D700 only gave the characteristic Raman spectrum of α -Fe₂O₃, while no traces of ZnFe₂O₄ were observed, although XRD measurements have indicated the formation of the mixture of $ZnFe_2O_4$ and α -Fe₂O₃. To explain this observation, it is necessary to examine the formation reactions of diphase nanostructure $ZnFe_2O_4/\gamma$ -Fe_2O₃.

At the beginning of the formation reaction, Zn and Fe ionic species were randomly distributed in the suspension precursor most likely in the hydrated forms of Zn(OH)₂ and Fe(OH)₃, respectively. ZnFe₂O₄ nanocrystals started to form when the precursor was treated at 200 °C under the adequate initial molar ratios. That is, initial molar ratio of Fe/Zn = 2 would give ZnFe₂O₄, while extra Fe specie for Fe/Zn > 2 led to the segregation of iron oxides in forming diphase nanostructures. With regards to the structural stabilities of α -Fe₂O₃ and γ -Fe₂O₃ nanocrystals in the diphase nanostructure, some investigations [12,28] have shown that the surface energy of α -Fe₂O₃ could be stabilized to several nanometers [11,29], which explains the co-existence of nanoscale γ -Fe₂O₃ with ZnFe₂O₄ at 2 < Fe/Zn < 6. γ -Fe₂O₃ is thermodynamically metastable at ambient condition and would transform into stable α -Fe₂O₃ beyond a critical particle size. It is known that the phase transformation from γ -Fe₂O₃ to α -Fe₂O₃ could be suppressed by either ZnFe₂O₄ or size effects. Firstly, the existence of $ZnFe_2O_4$ in the reaction system at initial molar ratios of Fe/Zn > 2 could suppress the growth of γ -Fe₂O₃ in favor of formation of diphase nanostructure $ZnFe_2O_4/$ γ -Fe₂O₃. However, when the initial molar ratio of Fe/Zn is larger than 6. γ -Fe₂O₃ particles would grow very fast to transform into α -Fe₂O₃. Therefore, α -Fe₂O₃ phase was detected for sample E. On the other hand, ZnFe₂O₄ also retards the phase transition from γ -Fe₂O₃ to α -Fe₂O₃ to higher temperatures. As confirmed by our TG-DTA analysis, the phase transition temperature of γ -Fe₂O₃ to α -Fe₂O₃ for our diphase nanostructures occurred at about 680 °C, which compares to that of 300 °C for bulk γ -Fe₂O₃ [30]. Secondly, size effect would be another important factor for retarding the phase transition of γ -Fe₂O₃ to α -Fe₂O₃ [11,13], (e.g., the transition temperature is 440 °C for 12 nm γ -Fe₂O₃ [31]). Zhou et al. [32], have prepared nanohybrids of nonstoichiometric zinc ferrite in amorphous silica. They found that a unique cluster glass structure occurred at the significantly high Fe/Zn molar ratio, in which zinc ferrite nanocrystals exist as amorphous Fe-rich pockets. Following this structural model, we assume that ZnFe₂O₄ particles in our diphase nanostructures are surrounded by Fe-rich pockets of γ -Fe₂O₃ which is seemly consistent with the slightly distinct Raman spectra as observed at different detected spots (e.g., D-1 and D-2 in Fig. 4). This assumption is also likely to occur since γ -Fe₂O₃ pockets over ZnFe₂O₄ nanocrystals could transform into kinetically stable α -Fe₂O₃ layers in a subsequent high-temperature treatment. We did observe only the Raman spectral features of terminal α -Fe₂O₃ layers for sample D700 (Fig. 4), although the possibility from the much larger Raman scattering power of α -Fe₂O₃ in comparison with that of $ZnFe_2O_4$ or γ -Fe₂O₃ could not be dismissed here [33].

Specific surface areas of diphase nanostructure $\text{ZnFe}_2\text{O}_4/\gamma$ -Fe₂O₃ are given in Table 1, The literature data reported for γ -Fe₂O₃ and ZnFe₂O₄ are also given for comparison [14,34]. It is seen that at the similar particle sizes, the specific surface areas of our diphase nanostructures are much larger than 78 and $40 \text{ m}^2/\text{g}$ reported in literature [14,34] for ZnFe₂O₄ and γ -Fe₂O₃ nanocrystals, respectively. This result indicated that our diphase nanostructures are highly dispersed. It is reasonable to conclude that the total specific surface area S_{total} , of diphase nanostructures could be described as

$$S_{\text{total}} = (1 - x)S_{\text{ZFO}} + xS_{\text{gamma}}$$
$$= S_{\text{ZFO}} + (S_{\text{gamma}} - S_{\text{ZFO}})x \tag{1}$$

where S_{ZFO} and S_{gamma} denote the specific surface area of components $ZnFe_2O_4$ and γ -Fe₂O₃, respectively. The mass percentage, x, of γ -Fe₂O₃ in diphase nanostructures is

calculated when stoichiometric spinel ZnFe₂O₄ is assumed to be completely formed in the diphase nanostructures, while excess Fe ions, when subtracting the component ZnFe₂O₄ from the initial molar ratios, are all segregated as γ -Fe₂O₃. The assumption of stoichiometric components in diphase nanostructures could be reliable, as indicated by Mossbauer spectra data for all zinc ferrites and the related oxide materials that were prepared under hydrothermal conditions [2]. The total specific surface area, S_{total}, as a function of x is indicated in Fig. 5. A linear relationship is clearly seen between total specific surface area and x:

$$S_{\rm BET} = 148.9(5) + 139(14)x,$$

where numbers 148.9(5) and 139(14) correspond to $S_{\rm ZFO}$ and S_{gamma} - S_{ZFO} , respectively, and the values in bracket represent uncertainties. This linear relationship showed that both S_{ZFO} and S_{gamma} terms are constant in diphase nanostructures. Our diphase nanostructures are an aggregate of spherical-like particles (see TEM image in inset of Fig. 5 for as-prepared sample D). It is well known that the dimensions for spherical particles can be well described as, $D = 6000/\rho S$ (where D, ρ and S denote particle size, density and specific surfaces, respectively). Therefore, the crystallite sizes for spherical particles are generally inversely proportional to the specific surface area. We anticipated that ZnFe₂O₄ and y-Fe₂O₃ in diphase nanostructures probably have crystallite sizes being independent on the mass percentage of γ -Fe₂O₃. Using the measured specific surface areas, the crystallite sizes for ZnFe₂O₄ and γ -Fe₂O₃ in sample *D* were calculated to be intermediated between 4 and 8 nm, which are closer to those by TEM observations.

Magnetic properties of diphase nanostructure of $ZnFe_2O_4/\gamma$ -Fe_2O_3 were examined as a function of γ -Fe_2O_3 content. Fig. 6 illustrates the room-temperature magnetization curves for samples A–D. It is seen that the

Fig. 5. Relationship of total specific surface area with mass percentage of γ -Fe₂O₃ for diphase nanostructure ZnFe₂O₄/ γ -Fe₂O₃. Inset is a TEM image for the as-prepared sample D, which indicates the spherical-like shape and fine nature of the diphase nanostructures.

Fig. 6. (a) Magnetization curves for samples A, B, C and D at room temperature. (b) The initial magnetization curves obtained by subtracting the contribution of $ZnFe_2O_4$ for sample B, C, and D, and (c) the dependence of saturation magnetization, M_s , contributed by γ -Fe₂O₃ phase on the mass percentage, x, of γ -Fe₂O₃.

magnetization curves was not saturated even at a maximum external field of 80 KOe, and that the hysteresis curves for all samples are 'S' shaped with very low coercivity ($H_c \leq 21$ Oe), all of which are characteristic of superparamagnetism [35]. From Fig. 6a, it is also clear that the magnetization increases with the initial molar ratio of Fe/Zn. Since samples B-D exhibited a diphase nanostructure $ZnFe_2O_4/\gamma$ -Fe_2O_3, the magnetic properties should involve the contributions from both component magnetic phases of $ZnFe_2O_4$ and γ -Fe₂O₃ and inter-particle interactions of these components as well. It is well known that surface hydration influences the magnetic behaviors of many magnetic nanoparticles by significantly reducing the inter-particle magnetic interactions [22]. The inter-particle interactions of these components were thus dismissed in this work because of the pronounced surface hydration in our diphase nanostructures (Fig. 3). Consequently, the total magnetic properties of diphase nanostructures should be primarily correlated with the phase compositions and particle sizes. Here, the size effects could be ignored since the particle sizes for $ZnFe_2O_4$ and γ -Fe₂O₃ in these diphase nanostructures are approximately the same, as is supported by our BET measurements. Therefore, the relative content of γ -Fe₂O₃ is a dominant factor for the variations in magnetization. The total magnetization (M_{total}) of the diphase nanostructures can be descried as

$$M_{\text{total}} = (1 - x)M_{\text{ZFO}} + xM_{\text{gamma}},$$
(2)

where M_{ZFO} and M_{gama} denote the magnetization of $ZnFe_2O_4$ and γ -Fe₂O₃, respectively, while x is the mass percentage of γ -Fe₂O₃ that has already defined in Eq. (1). Here, M_{total} is a corrected value after subtracting the contribution from surface hydration effects. As stated above, the particle sizes for $ZnFe_2O_4$ were almost the same,

regardless of the initial molar ratios. Therefore, the magnetization of $ZnFe_2O_4$ can be considered constant. Bearing on this, the initial magnetization curves of γ -Fe₂O₃ in the diphase nanostructures can be obtained by subtracting the contribution of ZnFe₂O₄, as shown in Fig. 6(b). The saturation magnetization of γ -Fe₂O₃ can be calculated by fitting the magnetization curves using a modified Langevin function [36] in terms of the linear part observed at high fields. The relationship between the saturation magnetization from the contribution of γ -Fe₂O₃ phase and its mass percentage (x) is nearly linear, as shown in Fig. 6(c), which indicated that the magnetization of γ -Fe₂O₃ could be a fixed value in all samples. By extrapolating to x = 1, the saturation magnetization of 63 emu/g was obtained for γ -Fe₂O₃ component at room temperature, which is slightly smaller than that of 76 emu/g for bulk y-Fe₂O₃ [37]. As for most of magnetic oxide nanocrystals [22,38,39], there exist plenty of uncompensated surface spins at grain boundaries and surfaces that are misaligned without any magnetic order. As a consequence, a spin-glass-like surface structure is expected in diphase nanostructures which could, however, explain the reduced total magnetism [37]. Based on the above analysis results, it can also be shown that the saturation magnetization of diphase nanostructure varied linearly with the mass percentage of γ -Fe₂O₃.

4. Conclusions

Magnetic diphase nanostructures of $ZnFe_2O_4/\gamma$ -Fe₂O₃ were formed by varying the initial molar ratio Fe/Zn. The structural stabilities of γ -Fe₂O₃ nanocrystals in these diphase nanostructures were improved by co-existence of ZnFe₂O₄ nanocrystals. Diphase nanostructures showed superparamagnetic behavior at room temperature with their saturation magnetization being varied linearly with the mass percentage of γ -Fe₂O₃. The saturation magnetization of γ -Fe₂O₃ was estimated as 63 emu/g, which is much smaller than bulk γ -Fe₂O₃. These results demonstrated the existence of a spin-glass-like surface on the diphase nanostructure.

Acknowledgments

This work was financially supported by NSFC under the contract (No. 20671092), Science and Technology Program from Fujian Province (No. 2005HZ01-1), a grant from Hundreds Youth Talents Program of CAS (Li GS), and in part by Research Foundation for the Returned Overseas Chinese scholars, State Education Ministry.

References

- L.P. Li, G.S. Li, R.L. Smith Jr., H. Inomata, Chem. Mater 12 (2000) 3705.
 J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bokhimi, Appl.
- [2] J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bokhimi, App Catal. A 234 (2002) 137.

- [3] G.F. Goya, H.R. Rechenberg, M. Chen, W.B. Yelon, J. Appl. Phys. 87 (2000) 8005.
- [4] J.F. Hochepied, P. Bonville, M.P. Pileni, J. Phys. Chem. B 104 (2000) 905.
- [5] J.F. Hochepied, M.P. Pileni, J. Appl. Phys. 87 (2000) 2472.
- [6] Z.H. Zhou, J.M. Xue, H.S.O. Chan, J. Wang, J. Appl. Phys. 90 (2001) 4169.
- [7] A.C.F.M. Costa, E. Tortella, M.R. Morelli, R.H.G.A. Kiminami, J. Magn. Magn. Mater. 256 (2003) 174.
- [8] A.M. Sankpal, S.S. Suryavanshi, S.V. Kakatkar, G.G. Tengshe, R.S. Patil, N.D. Chaudhari, S.R. Sawant, J. Magn. Magn. Mater. 186 (1998) 349.
- [9] A. Verma, T.C. Goel, R.G. Mendiratta, M.I. Alam, Mater. Sci. Eng. B 60 (1999) 156.
- [10] T. Kodama, J. Mater. Chem. 2 (1992) 525.
- [11] P. Ayyub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C. 21 (1988) 2229.
- [12] G. Schimanke, M. Martin, Solid State Ion. 136-137 (2000) 1235.
- [13] D.R. Chen, R.R. Xu, J. Solid State Chem. 137 (1998) 185.
- [14] C. Pascal, J.L. Pascal, F. Favier, M.L. Elidrissi. Moubtassim, C. Payen, Chem. Mater. 11 (1999) 141.
- [15] R.S. de. Biasi., E.C. Gondim, Solid State Commun. 138 (2006) 271.
- [16] X.M. Liu, S.Y. Fu, H.M. Xiao, J. Solid State Chem. 179 (2006) 1554.
- [17] T. Verdier, V. Nachbaur, M. Jean, J. Solid State Chem. 178 (2005) 3243.
- [18] T. Belin, N. Guigue-Millot, T. Caillot, D. Aymes, J.C. Niepce, J. Solid State Chem. 163 (2002) 459.
- [19] T.G. Cooper, N.H. de Leeuw, Surf. Sci. 531 (2003) 159.
- [20] E. Moran, M.C. Blesa, M.E. Medina, J.D. Tornero, N. Menendez, U. Amador, Inorg. Chem. 41 (2002) 5961.
- [21] T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, G. Rogez, Chem. Mater. 18 (2006) 4399.
- [22] L. Lu, L.P. Li, X.J. Wang, G.S. Li, J. Phys. Chem. B. 109 (2005) 17151 and references therein.
- [23] R.D. Waldron, Phys. Rev. 99 (1955) 1727.
- [24] B. Gillot, R.M. Benloucif, A. Rousset, J. Solid State Chem. 39 (1981) 329.
- [25] Z.W. Wang, D. Schiferl, Y.S. Zhao, H. St. C. O'Neill, J. Phys. Chem. Solid. 64 (2003) 2517.
- [26] I. Chamritski, G. Burns, J. Phys. Chem. B. 109 (2005) 4965.
- [27] M.H. Sousa, F.A. Tourinho, J.C. Rubim, J. Raman Spectrosc. 31 (2000) 185.
- [28] T.H. Chen, H.F. Xu, Q.Q. Xie, J. Chen, J.F. Ji, H.Y. Lu, Earth Planet. Sci. Lett. 240 (2005) 790.
- [29] C. Cannas, G. Concas, D. Gatteschi, A. Musinu, G. Piccaluga, C. Sangregorio, J. Mater. Chem. 12 (2002) 3141.
- [30] R.M. Cornell, U. Schwertmann, The Iron Oxides, Weinheim, VCH, 1996.
- [31] X.S. Ye, D.S. Lin, Z.K. Jiao, L.D. Zhang, J. Phys. D: Appl. Phys. 31 (1998) 2739.
- [32] Z.H. Zhou, J. Wang, J.M. Xue, H.S.O. Chan, J. Mater. Chem. 11 (2001) 3110.
- [33] O.N. Shebanova, P Lazor, J. Solid State Chem. 174 (2003) 424.
- [34] F.A. Lopez, A. Lopez-Delgado, J.L. Martin. de. Vidales, E. Vila, J. Alloy Compd. 265 (1998) 291.
- [35] M.A. Khadar, V. Biju, A. Inoue, Mater. Res. Bull. 38 (2003) 1341.
- [36] S.H. Kilcoyne, R. Cywinski, J. Magn. Magn. Mater. 140–144 (1995) 1466.
- [37] L. Zhang, G.C. Papaefthymiou, J.Y. Ying, J. Appl. Phys. 81 (1997) 6892.
- [38] A. Roy, V. Srinivas, S. Ram, J.A. De Toro, J.M. Riveiro, J. Appl. Phys. 96 (2004) 6782.
- [39] L.P. Li, L.J. Chen, R.M. Qihe, G.S. Li, Appl. Phys. Lett. 89 (2006) 134102.